Metamath Proof Explorer


Theorem osumcor2i

Description: Corollary of osumi , showing it holds under the weaker hypothesis that A and B commute. (Contributed by NM, 6-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses osum.1 A C
osum.2 B C
Assertion osumcor2i A 𝐶 B A + B = A B

Proof

Step Hyp Ref Expression
1 osum.1 A C
2 osum.2 B C
3 1 2 cmcm2i A 𝐶 B A 𝐶 B
4 2 choccli B C
5 1 4 cmbr4i A 𝐶 B A A B B
6 3 5 bitri A 𝐶 B A A B B
7 1 choccli A C
8 7 4 chjcli A B C
9 1 8 chincli A A B C
10 9 2 osumi A A B B A A B + B = A A B B
11 7 4 chjcomi A B = B A
12 11 ineq2i A A B = A B A
13 12 oveq1i A A B B = A B A B
14 4 7 chjcli B A C
15 1 14 chincli A B A C
16 15 2 chjcomi A B A B = B A B A
17 13 16 eqtri A A B B = B A B A
18 2 1 pjoml4i B A B A = B A
19 2 1 chjcomi B A = A B
20 18 19 eqtri B A B A = A B
21 17 20 eqtri A A B B = A B
22 21 eqeq2i A A B + B = A A B B A A B + B = A B
23 inss1 A A B A
24 9 chshii A A B S
25 1 chshii A S
26 2 chshii B S
27 24 25 26 shlessi A A B A A A B + B A + B
28 23 27 ax-mp A A B + B A + B
29 sseq1 A A B + B = A B A A B + B A + B A B A + B
30 28 29 mpbii A A B + B = A B A B A + B
31 22 30 sylbi A A B + B = A A B B A B A + B
32 10 31 syl A A B B A B A + B
33 6 32 sylbi A 𝐶 B A B A + B
34 1 2 chsleji A + B A B
35 33 34 jctil A 𝐶 B A + B A B A B A + B
36 eqss A + B = A B A + B A B A B A + B
37 35 36 sylibr A 𝐶 B A + B = A B