Metamath Proof Explorer


Theorem osumcori

Description: Corollary of osumi . (Contributed by NM, 5-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses osum.1 A C
osum.2 B C
Assertion osumcori A B + A B = A B A B

Proof

Step Hyp Ref Expression
1 osum.1 A C
2 osum.2 B C
3 inss2 A B B
4 1 choccli A C
5 2 4 chub2i B A B
6 3 5 sstri A B A B
7 1 2 chdmm3i A B = A B
8 6 7 sseqtrri A B A B
9 1 2 chincli A B C
10 2 choccli B C
11 1 10 chincli A B C
12 9 11 osumi A B A B A B + A B = A B A B
13 8 12 ax-mp A B + A B = A B A B