Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Properties of Hilbert subspaces
Orthogonal subspaces
osumcori
Next ⟩
osumcor2i
Metamath Proof Explorer
Ascii
Unicode
Theorem
osumcori
Description:
Corollary of
osumi
.
(Contributed by
NM
, 5-Nov-2000)
(New usage is discouraged.)
Ref
Expression
Hypotheses
osum.1
⊢
A
∈
C
ℋ
osum.2
⊢
B
∈
C
ℋ
Assertion
osumcori
⊢
A
∩
B
+
ℋ
A
∩
⊥
⁡
B
=
A
∩
B
∨
ℋ
A
∩
⊥
⁡
B
Proof
Step
Hyp
Ref
Expression
1
osum.1
⊢
A
∈
C
ℋ
2
osum.2
⊢
B
∈
C
ℋ
3
inss2
⊢
A
∩
B
⊆
B
4
1
choccli
⊢
⊥
⁡
A
∈
C
ℋ
5
2
4
chub2i
⊢
B
⊆
⊥
⁡
A
∨
ℋ
B
6
3
5
sstri
⊢
A
∩
B
⊆
⊥
⁡
A
∨
ℋ
B
7
1
2
chdmm3i
⊢
⊥
⁡
A
∩
⊥
⁡
B
=
⊥
⁡
A
∨
ℋ
B
8
6
7
sseqtrri
⊢
A
∩
B
⊆
⊥
⁡
A
∩
⊥
⁡
B
9
1
2
chincli
⊢
A
∩
B
∈
C
ℋ
10
2
choccli
⊢
⊥
⁡
B
∈
C
ℋ
11
1
10
chincli
⊢
A
∩
⊥
⁡
B
∈
C
ℋ
12
9
11
osumi
⊢
A
∩
B
⊆
⊥
⁡
A
∩
⊥
⁡
B
→
A
∩
B
+
ℋ
A
∩
⊥
⁡
B
=
A
∩
B
∨
ℋ
A
∩
⊥
⁡
B
13
8
12
ax-mp
⊢
A
∩
B
+
ℋ
A
∩
⊥
⁡
B
=
A
∩
B
∨
ℋ
A
∩
⊥
⁡
B