Metamath Proof Explorer


Theorem otel3xp

Description: An ordered triple is an element of a doubled Cartesian product. (Contributed by Alexander van der Vekens, 26-Feb-2018)

Ref Expression
Assertion otel3xp T = A B C A X B Y C Z T X × Y × Z

Proof

Step Hyp Ref Expression
1 df-ot A B C = A B C
2 3simpa A X B Y C Z A X B Y
3 opelxp A B X × Y A X B Y
4 2 3 sylibr A X B Y C Z A B X × Y
5 simp3 A X B Y C Z C Z
6 4 5 opelxpd A X B Y C Z A B C X × Y × Z
7 1 6 eqeltrid A X B Y C Z A B C X × Y × Z
8 eleq1 T = A B C T X × Y × Z A B C X × Y × Z
9 7 8 syl5ibr T = A B C A X B Y C Z T X × Y × Z
10 9 imp T = A B C A X B Y C Z T X × Y × Z