Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
oteq1
Next ⟩
oteq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
oteq1
Description:
Equality theorem for ordered triples.
(Contributed by
NM
, 3-Apr-2015)
Ref
Expression
Assertion
oteq1
⊢
A
=
B
→
A
C
D
=
B
C
D
Proof
Step
Hyp
Ref
Expression
1
opeq1
⊢
A
=
B
→
A
C
=
B
C
2
1
opeq1d
⊢
A
=
B
→
A
C
D
=
B
C
D
3
df-ot
⊢
A
C
D
=
A
C
D
4
df-ot
⊢
B
C
D
=
B
C
D
5
2
3
4
3eqtr4g
⊢
A
=
B
→
A
C
D
=
B
C
D