Metamath Proof Explorer


Theorem oteq123d

Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses oteq1d.1 φ A = B
oteq123d.2 φ C = D
oteq123d.3 φ E = F
Assertion oteq123d φ A C E = B D F

Proof

Step Hyp Ref Expression
1 oteq1d.1 φ A = B
2 oteq123d.2 φ C = D
3 oteq123d.3 φ E = F
4 1 oteq1d φ A C E = B C E
5 2 oteq2d φ B C E = B D E
6 3 oteq3d φ B D E = B D F
7 4 5 6 3eqtrd φ A C E = B D F