Metamath Proof Explorer


Theorem oteq1d

Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis oteq1d.1 φ A = B
Assertion oteq1d φ A C D = B C D

Proof

Step Hyp Ref Expression
1 oteq1d.1 φ A = B
2 oteq1 A = B A C D = B C D
3 1 2 syl φ A C D = B C D