Metamath Proof Explorer


Theorem oteq2d

Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis oteq1d.1 φ A = B
Assertion oteq2d φ C A D = C B D

Proof

Step Hyp Ref Expression
1 oteq1d.1 φ A = B
2 oteq2 A = B C A D = C B D
3 1 2 syl φ C A D = C B D