Metamath Proof Explorer


Theorem oteqex

Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 28-May-2008) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion oteqex A B C = R S T A V B V C V R V S V T V

Proof

Step Hyp Ref Expression
1 simp3 A V B V C V C V
2 1 a1i A B C = R S T A V B V C V C V
3 simp3 R V S V T V T V
4 oteqex2 A B C = R S T C V T V
5 3 4 syl5ibr A B C = R S T R V S V T V C V
6 opex A B V
7 opthg A B V C V A B C = R S T A B = R S C = T
8 6 7 mpan C V A B C = R S T A B = R S C = T
9 8 simprbda C V A B C = R S T A B = R S
10 opeqex A B = R S A V B V R V S V
11 9 10 syl C V A B C = R S T A V B V R V S V
12 4 adantl C V A B C = R S T C V T V
13 11 12 anbi12d C V A B C = R S T A V B V C V R V S V T V
14 df-3an A V B V C V A V B V C V
15 df-3an R V S V T V R V S V T V
16 13 14 15 3bitr4g C V A B C = R S T A V B V C V R V S V T V
17 16 expcom A B C = R S T C V A V B V C V R V S V T V
18 2 5 17 pm5.21ndd A B C = R S T A V B V C V R V S V T V