Metamath Proof Explorer


Theorem oteqex2

Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015)

Ref Expression
Assertion oteqex2 A B C = R S T C V T V

Proof

Step Hyp Ref Expression
1 opeqex A B C = R S T A B V C V R S V T V
2 opex A B V
3 2 biantrur C V A B V C V
4 opex R S V
5 4 biantrur T V R S V T V
6 1 3 5 3bitr4g A B C = R S T C V T V