Metamath Proof Explorer


Theorem otiunsndisj

Description: The union of singletons consisting of ordered triples which have distinct first and third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018)

Ref Expression
Assertion otiunsndisj B X Disj a V c W a a B c

Proof

Step Hyp Ref Expression
1 eliun s c W a a B c c W a s a B c
2 otthg a V B X c W a a B c = d B e a = d B = B c = e
3 simp1 a = d B = B c = e a = d
4 2 3 syl6bi a V B X c W a a B c = d B e a = d
5 4 con3d a V B X c W a ¬ a = d ¬ a B c = d B e
6 5 3exp a V B X c W a ¬ a = d ¬ a B c = d B e
7 6 impcom B X a V c W a ¬ a = d ¬ a B c = d B e
8 7 com3r ¬ a = d B X a V c W a ¬ a B c = d B e
9 8 imp31 ¬ a = d B X a V c W a ¬ a B c = d B e
10 velsn s a B c s = a B c
11 eqeq1 s = a B c s = d B e a B c = d B e
12 11 notbid s = a B c ¬ s = d B e ¬ a B c = d B e
13 10 12 sylbi s a B c ¬ s = d B e ¬ a B c = d B e
14 9 13 syl5ibrcom ¬ a = d B X a V c W a s a B c ¬ s = d B e
15 14 imp ¬ a = d B X a V c W a s a B c ¬ s = d B e
16 velsn s d B e s = d B e
17 15 16 sylnibr ¬ a = d B X a V c W a s a B c ¬ s d B e
18 17 adantr ¬ a = d B X a V c W a s a B c e W d ¬ s d B e
19 18 nrexdv ¬ a = d B X a V c W a s a B c ¬ e W d s d B e
20 eliun s e W d d B e e W d s d B e
21 19 20 sylnibr ¬ a = d B X a V c W a s a B c ¬ s e W d d B e
22 21 rexlimdva2 ¬ a = d B X a V c W a s a B c ¬ s e W d d B e
23 1 22 syl5bi ¬ a = d B X a V s c W a a B c ¬ s e W d d B e
24 23 ralrimiv ¬ a = d B X a V s c W a a B c ¬ s e W d d B e
25 oteq3 c = e d B c = d B e
26 25 sneqd c = e d B c = d B e
27 26 cbviunv c W d d B c = e W d d B e
28 27 eleq2i s c W d d B c s e W d d B e
29 28 notbii ¬ s c W d d B c ¬ s e W d d B e
30 29 ralbii s c W a a B c ¬ s c W d d B c s c W a a B c ¬ s e W d d B e
31 24 30 sylibr ¬ a = d B X a V s c W a a B c ¬ s c W d d B c
32 disj c W a a B c c W d d B c = s c W a a B c ¬ s c W d d B c
33 31 32 sylibr ¬ a = d B X a V c W a a B c c W d d B c =
34 33 expcom B X a V ¬ a = d c W a a B c c W d d B c =
35 34 orrd B X a V a = d c W a a B c c W d d B c =
36 35 adantrr B X a V d V a = d c W a a B c c W d d B c =
37 36 ralrimivva B X a V d V a = d c W a a B c c W d d B c =
38 sneq a = d a = d
39 38 difeq2d a = d W a = W d
40 oteq1 a = d a B c = d B c
41 40 sneqd a = d a B c = d B c
42 39 41 disjiunb Disj a V c W a a B c a V d V a = d c W a a B c c W d d B c =
43 37 42 sylibr B X Disj a V c W a a B c