| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eliun |
|
| 2 |
|
otthg |
|
| 3 |
|
simp1 |
|
| 4 |
2 3
|
biimtrdi |
|
| 5 |
4
|
con3d |
|
| 6 |
5
|
3exp |
|
| 7 |
6
|
impcom |
|
| 8 |
7
|
com3r |
|
| 9 |
8
|
imp31 |
|
| 10 |
|
velsn |
|
| 11 |
|
eqeq1 |
|
| 12 |
11
|
notbid |
|
| 13 |
10 12
|
sylbi |
|
| 14 |
9 13
|
syl5ibrcom |
|
| 15 |
14
|
imp |
|
| 16 |
|
velsn |
|
| 17 |
15 16
|
sylnibr |
|
| 18 |
17
|
adantr |
|
| 19 |
18
|
nrexdv |
|
| 20 |
|
eliun |
|
| 21 |
19 20
|
sylnibr |
|
| 22 |
21
|
rexlimdva2 |
|
| 23 |
1 22
|
biimtrid |
|
| 24 |
23
|
ralrimiv |
|
| 25 |
|
oteq3 |
|
| 26 |
25
|
sneqd |
|
| 27 |
26
|
cbviunv |
|
| 28 |
27
|
eleq2i |
|
| 29 |
28
|
notbii |
|
| 30 |
29
|
ralbii |
|
| 31 |
24 30
|
sylibr |
|
| 32 |
|
disj |
|
| 33 |
31 32
|
sylibr |
|
| 34 |
33
|
expcom |
|
| 35 |
34
|
orrd |
|
| 36 |
35
|
adantrr |
|
| 37 |
36
|
ralrimivva |
|
| 38 |
|
sneq |
|
| 39 |
38
|
difeq2d |
|
| 40 |
|
oteq1 |
|
| 41 |
40
|
sneqd |
|
| 42 |
39 41
|
disjiunb |
|
| 43 |
37 42
|
sylibr |
|