Step |
Hyp |
Ref |
Expression |
1 |
|
eliun |
|
2 |
|
otthg |
|
3 |
|
simp1 |
|
4 |
2 3
|
syl6bi |
|
5 |
4
|
con3d |
|
6 |
5
|
3exp |
|
7 |
6
|
impcom |
|
8 |
7
|
com3r |
|
9 |
8
|
imp31 |
|
10 |
|
velsn |
|
11 |
|
eqeq1 |
|
12 |
11
|
notbid |
|
13 |
10 12
|
sylbi |
|
14 |
9 13
|
syl5ibrcom |
|
15 |
14
|
imp |
|
16 |
|
velsn |
|
17 |
15 16
|
sylnibr |
|
18 |
17
|
adantr |
|
19 |
18
|
nrexdv |
|
20 |
|
eliun |
|
21 |
19 20
|
sylnibr |
|
22 |
21
|
rexlimdva2 |
|
23 |
1 22
|
syl5bi |
|
24 |
23
|
ralrimiv |
|
25 |
|
oteq3 |
|
26 |
25
|
sneqd |
|
27 |
26
|
cbviunv |
|
28 |
27
|
eleq2i |
|
29 |
28
|
notbii |
|
30 |
29
|
ralbii |
|
31 |
24 30
|
sylibr |
|
32 |
|
disj |
|
33 |
31 32
|
sylibr |
|
34 |
33
|
expcom |
|
35 |
34
|
orrd |
|
36 |
35
|
adantrr |
|
37 |
36
|
ralrimivva |
|
38 |
|
sneq |
|
39 |
38
|
difeq2d |
|
40 |
|
oteq1 |
|
41 |
40
|
sneqd |
|
42 |
39 41
|
disjiunb |
|
43 |
37 42
|
sylibr |
|