Metamath Proof Explorer


Theorem otpsbas

Description: The base set of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015) (Revised by AV, 9-Sep-2021)

Ref Expression
Hypothesis otpsstr.w K = Base ndx B TopSet ndx J ndx ˙
Assertion otpsbas B V B = Base K

Proof

Step Hyp Ref Expression
1 otpsstr.w K = Base ndx B TopSet ndx J ndx ˙
2 1 otpsstr K Struct 1 10
3 baseid Base = Slot Base ndx
4 snsstp1 Base ndx B Base ndx B TopSet ndx J ndx ˙
5 4 1 sseqtrri Base ndx B K
6 2 3 5 strfv B V B = Base K