Metamath Proof Explorer
Description: The order of a topological ordered space. (Contributed by Mario
Carneiro, 12-Nov-2015) (Revised by AV, 9-Sep-2021)
|
|
Ref |
Expression |
|
Hypothesis |
otpsstr.w |
|
|
Assertion |
otpsle |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
otpsstr.w |
|
2 |
1
|
otpsstr |
|
3 |
|
pleid |
|
4 |
|
snsstp3 |
|
5 |
4 1
|
sseqtrri |
|
6 |
2 3 5
|
strfv |
|