Metamath Proof Explorer


Theorem otpsle

Description: The order of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015) (Revised by AV, 9-Sep-2021)

Ref Expression
Hypothesis otpsstr.w K = Base ndx B TopSet ndx J ndx ˙
Assertion otpsle ˙ V ˙ = K

Proof

Step Hyp Ref Expression
1 otpsstr.w K = Base ndx B TopSet ndx J ndx ˙
2 1 otpsstr K Struct 1 10
3 pleid le = Slot ndx
4 snsstp3 ndx ˙ Base ndx B TopSet ndx J ndx ˙
5 4 1 sseqtrri ndx ˙ K
6 2 3 5 strfv ˙ V ˙ = K