Metamath Proof Explorer


Theorem otpsstr

Description: Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015) (Revised by AV, 9-Sep-2021)

Ref Expression
Hypothesis otpsstr.w K = Base ndx B TopSet ndx J ndx ˙
Assertion otpsstr K Struct 1 10

Proof

Step Hyp Ref Expression
1 otpsstr.w K = Base ndx B TopSet ndx J ndx ˙
2 1nn 1
3 basendx Base ndx = 1
4 1lt9 1 < 9
5 9nn 9
6 tsetndx TopSet ndx = 9
7 9lt10 9 < 10
8 10nn 10
9 plendx ndx = 10
10 2 3 4 5 6 7 8 9 strle3 Base ndx B TopSet ndx J ndx ˙ Struct 1 10
11 1 10 eqbrtri K Struct 1 10