Metamath Proof Explorer
Description: Functionality of a topological ordered space. (Contributed by Mario
Carneiro, 12-Nov-2015) (Revised by AV, 9-Sep-2021)
|
|
Ref |
Expression |
|
Hypothesis |
otpsstr.w |
|
|
Assertion |
otpsstr |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
otpsstr.w |
|
2 |
|
1nn |
|
3 |
|
basendx |
|
4 |
|
1lt9 |
|
5 |
|
9nn |
|
6 |
|
tsetndx |
|
7 |
|
9lt10 |
|
8 |
|
10nn |
|
9 |
|
plendx |
|
10 |
2 3 4 5 6 7 8 9
|
strle3 |
|
11 |
1 10
|
eqbrtri |
|