Metamath Proof Explorer


Theorem otpstset

Description: The open sets of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015) (Revised by AV, 9-Sep-2021)

Ref Expression
Hypothesis otpsstr.w K = Base ndx B TopSet ndx J ndx ˙
Assertion otpstset J V J = TopSet K

Proof

Step Hyp Ref Expression
1 otpsstr.w K = Base ndx B TopSet ndx J ndx ˙
2 1 otpsstr K Struct 1 10
3 tsetid TopSet = Slot TopSet ndx
4 snsstp2 TopSet ndx J Base ndx B TopSet ndx J ndx ˙
5 4 1 sseqtrri TopSet ndx J K
6 2 3 5 strfv J V J = TopSet K