Metamath Proof Explorer


Theorem otsndisj

Description: The singletons consisting of ordered triples which have distinct third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018)

Ref Expression
Assertion otsndisj A X B Y Disj c V A B c

Proof

Step Hyp Ref Expression
1 otthg A X B Y c V A B c = A B d A = A B = B c = d
2 1 3expa A X B Y c V A B c = A B d A = A B = B c = d
3 simp3 A = A B = B c = d c = d
4 2 3 syl6bi A X B Y c V A B c = A B d c = d
5 4 con3rr3 ¬ c = d A X B Y c V ¬ A B c = A B d
6 5 imp ¬ c = d A X B Y c V ¬ A B c = A B d
7 6 neqned ¬ c = d A X B Y c V A B c A B d
8 disjsn2 A B c A B d A B c A B d =
9 7 8 syl ¬ c = d A X B Y c V A B c A B d =
10 9 expcom A X B Y c V ¬ c = d A B c A B d =
11 10 orrd A X B Y c V c = d A B c A B d =
12 11 adantrr A X B Y c V d V c = d A B c A B d =
13 12 ralrimivva A X B Y c V d V c = d A B c A B d =
14 oteq3 c = d A B c = A B d
15 14 sneqd c = d A B c = A B d
16 15 disjor Disj c V A B c c V d V c = d A B c A B d =
17 13 16 sylibr A X B Y Disj c V A B c