Metamath Proof Explorer


Theorem otth

Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses otth.1 A V
otth.2 B V
otth.3 R V
Assertion otth A B R = C D S A = C B = D R = S

Proof

Step Hyp Ref Expression
1 otth.1 A V
2 otth.2 B V
3 otth.3 R V
4 df-ot A B R = A B R
5 df-ot C D S = C D S
6 4 5 eqeq12i A B R = C D S A B R = C D S
7 1 2 3 otth2 A B R = C D S A = C B = D R = S
8 6 7 bitri A B R = C D S A = C B = D R = S