Metamath Proof Explorer
Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014) (Revised by Mario Carneiro, 26-Apr-2015)
|
|
Ref |
Expression |
|
Hypotheses |
otth.1 |
|
|
|
otth.2 |
|
|
|
otth.3 |
|
|
Assertion |
otth |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
otth.1 |
|
| 2 |
|
otth.2 |
|
| 3 |
|
otth.3 |
|
| 4 |
|
df-ot |
|
| 5 |
|
df-ot |
|
| 6 |
4 5
|
eqeq12i |
|
| 7 |
1 2 3
|
otth2 |
|
| 8 |
6 7
|
bitri |
|