Metamath Proof Explorer


Theorem otth2

Description: Ordered triple theorem, with triple expressed with ordered pairs. (Contributed by NM, 1-May-1995) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses otth.1 A V
otth.2 B V
otth.3 R V
Assertion otth2 A B R = C D S A = C B = D R = S

Proof

Step Hyp Ref Expression
1 otth.1 A V
2 otth.2 B V
3 otth.3 R V
4 1 2 opth A B = C D A = C B = D
5 4 anbi1i A B = C D R = S A = C B = D R = S
6 opex A B V
7 6 3 opth A B R = C D S A B = C D R = S
8 df-3an A = C B = D R = S A = C B = D R = S
9 5 7 8 3bitr4i A B R = C D S A = C B = D R = S