Metamath Proof Explorer


Theorem otthne

Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 31-Jan-2025)

Ref Expression
Hypotheses otthne.1 A V
otthne.2 B V
otthne.3 C V
Assertion otthne A B C D E F A D B E C F

Proof

Step Hyp Ref Expression
1 otthne.1 A V
2 otthne.2 B V
3 otthne.3 C V
4 1 2 3 otth A B C = D E F A = D B = E C = F
5 4 notbii ¬ A B C = D E F ¬ A = D B = E C = F
6 3ianor ¬ A = D B = E C = F ¬ A = D ¬ B = E ¬ C = F
7 5 6 bitri ¬ A B C = D E F ¬ A = D ¬ B = E ¬ C = F
8 df-ne A B C D E F ¬ A B C = D E F
9 df-ne A D ¬ A = D
10 df-ne B E ¬ B = E
11 df-ne C F ¬ C = F
12 9 10 11 3orbi123i A D B E C F ¬ A = D ¬ B = E ¬ C = F
13 7 8 12 3bitr4i A B C D E F A D B E C F