Metamath Proof Explorer


Theorem outpasch

Description: Axiom of Pasch, outer form. This was proven by Gupta from other axioms and is therefore presented as Theorem 9.6 in Schwabhauser p. 70. (Contributed by Thierry Arnoux, 16-Aug-2020)

Ref Expression
Hypotheses outpasch.p P = Base G
outpasch.i I = Itv G
outpasch.l L = Line 𝒢 G
outpasch.g φ G 𝒢 Tarski
outpasch.a φ A P
outpasch.b φ B P
outpasch.c φ C P
outpasch.r φ R P
outpasch.q φ Q P
outpasch.1 φ C A I R
outpasch.2 φ Q B I C
Assertion outpasch φ x P x A I B Q R I x

Proof

Step Hyp Ref Expression
1 outpasch.p P = Base G
2 outpasch.i I = Itv G
3 outpasch.l L = Line 𝒢 G
4 outpasch.g φ G 𝒢 Tarski
5 outpasch.a φ A P
6 outpasch.b φ B P
7 outpasch.c φ C P
8 outpasch.r φ R P
9 outpasch.q φ Q P
10 outpasch.1 φ C A I R
11 outpasch.2 φ Q B I C
12 5 adantr φ Q R I C A P
13 simpr φ Q R I C x = A x = A
14 13 eleq1d φ Q R I C x = A x A I B A A I B
15 13 oveq2d φ Q R I C x = A R I x = R I A
16 15 eleq2d φ Q R I C x = A Q R I x Q R I A
17 14 16 anbi12d φ Q R I C x = A x A I B Q R I x A A I B Q R I A
18 eqid dist G = dist G
19 1 18 2 4 5 6 tgbtwntriv1 φ A A I B
20 19 adantr φ Q R I C A A I B
21 4 adantr φ Q R I C G 𝒢 Tarski
22 8 adantr φ Q R I C R P
23 9 adantr φ Q R I C Q P
24 7 adantr φ Q R I C C P
25 simpr φ Q R I C Q R I C
26 1 18 2 4 5 7 8 10 tgbtwncom φ C R I A
27 26 adantr φ Q R I C C R I A
28 1 18 2 21 22 23 24 12 25 27 tgbtwnexch φ Q R I C Q R I A
29 20 28 jca φ Q R I C A A I B Q R I A
30 12 17 29 rspcedvd φ Q R I C x P x A I B Q R I x
31 30 adantlr φ R Q L C Q = C Q R I C x P x A I B Q R I x
32 6 ad2antrr φ R Q L C Q = C ¬ Q R I C B P
33 eleq1 x = B x A I B B A I B
34 oveq2 x = B R I x = R I B
35 34 eleq2d x = B Q R I x Q R I B
36 33 35 anbi12d x = B x A I B Q R I x B A I B Q R I B
37 36 adantl φ R Q L C Q = C ¬ Q R I C x = B x A I B Q R I x B A I B Q R I B
38 1 18 2 4 5 6 tgbtwntriv2 φ B A I B
39 38 ad2antrr φ R Q L C Q = C ¬ Q R I C B A I B
40 4 ad3antrrr φ R Q L C Q = C ¬ Q R I C R Q I C G 𝒢 Tarski
41 7 ad3antrrr φ R Q L C Q = C ¬ Q R I C R Q I C C P
42 8 ad3antrrr φ R Q L C Q = C ¬ Q R I C R Q I C R P
43 9 ad3antrrr φ R Q L C Q = C ¬ Q R I C R Q I C Q P
44 6 ad3antrrr φ R Q L C Q = C ¬ Q R I C R Q I C B P
45 simpr φ R Q L C Q = C ¬ Q R I C R Q I C R Q I C
46 1 18 2 40 43 42 41 45 tgbtwncom φ R Q L C Q = C ¬ Q R I C R Q I C R C I Q
47 1 18 2 4 6 9 7 11 tgbtwncom φ Q C I B
48 47 ad3antrrr φ R Q L C Q = C ¬ Q R I C R Q I C Q C I B
49 1 18 2 40 41 42 43 44 46 48 tgbtwnexch3 φ R Q L C Q = C ¬ Q R I C R Q I C Q R I B
50 4 ad3antrrr φ R Q L C Q = C ¬ Q R I C C Q I R G 𝒢 Tarski
51 6 ad3antrrr φ R Q L C Q = C ¬ Q R I C C Q I R B P
52 9 ad3antrrr φ R Q L C Q = C ¬ Q R I C C Q I R Q P
53 8 ad3antrrr φ R Q L C Q = C ¬ Q R I C C Q I R R P
54 7 ad3antrrr φ R Q L C Q = C ¬ Q R I C C Q I R C P
55 simpr φ R Q L C Q = C ¬ Q R I C C Q I R Q = C Q = C
56 1 18 2 4 8 7 tgbtwntriv2 φ C R I C
57 56 ad4antr φ R Q L C Q = C ¬ Q R I C C Q I R Q = C C R I C
58 55 57 eqeltrd φ R Q L C Q = C ¬ Q R I C C Q I R Q = C Q R I C
59 simpllr φ R Q L C Q = C ¬ Q R I C C Q I R Q = C ¬ Q R I C
60 58 59 pm2.65da φ R Q L C Q = C ¬ Q R I C C Q I R ¬ Q = C
61 60 neqned φ R Q L C Q = C ¬ Q R I C C Q I R Q C
62 11 ad3antrrr φ R Q L C Q = C ¬ Q R I C C Q I R Q B I C
63 simpr φ R Q L C Q = C ¬ Q R I C C Q I R C Q I R
64 1 18 2 50 51 52 54 53 61 62 63 tgbtwnouttr φ R Q L C Q = C ¬ Q R I C C Q I R Q B I R
65 1 18 2 50 51 52 53 64 tgbtwncom φ R Q L C Q = C ¬ Q R I C C Q I R Q R I B
66 1 3 2 4 9 7 8 tgcolg φ R Q L C Q = C R Q I C Q R I C C Q I R
67 66 biimpa φ R Q L C Q = C R Q I C Q R I C C Q I R
68 3orcoma Q R I C R Q I C C Q I R R Q I C Q R I C C Q I R
69 3orass Q R I C R Q I C C Q I R Q R I C R Q I C C Q I R
70 68 69 bitr3i R Q I C Q R I C C Q I R Q R I C R Q I C C Q I R
71 67 70 sylib φ R Q L C Q = C Q R I C R Q I C C Q I R
72 71 orcanai φ R Q L C Q = C ¬ Q R I C R Q I C C Q I R
73 49 65 72 mpjaodan φ R Q L C Q = C ¬ Q R I C Q R I B
74 39 73 jca φ R Q L C Q = C ¬ Q R I C B A I B Q R I B
75 32 37 74 rspcedvd φ R Q L C Q = C ¬ Q R I C x P x A I B Q R I x
76 31 75 pm2.61dan φ R Q L C Q = C x P x A I B Q R I x
77 6 ad2antrr φ ¬ R Q L C Q = C B R L Q B P
78 36 adantl φ ¬ R Q L C Q = C B R L Q x = B x A I B Q R I x B A I B Q R I B
79 38 ad2antrr φ ¬ R Q L C Q = C B R L Q B A I B
80 4 ad2antrr φ ¬ R Q L C Q = C B R L Q G 𝒢 Tarski
81 8 ad2antrr φ ¬ R Q L C Q = C B R L Q R P
82 9 ad2antrr φ ¬ R Q L C Q = C B R L Q Q P
83 7 ad2antrr φ ¬ R Q L C Q = C B R L Q C P
84 simplr φ ¬ R Q L C Q = C B R L Q ¬ R Q L C Q = C
85 simpr φ ¬ R Q L C Q = C B R L Q B R L Q
86 4 adantr φ ¬ R Q L C Q = C G 𝒢 Tarski
87 8 adantr φ ¬ R Q L C Q = C R P
88 9 adantr φ ¬ R Q L C Q = C Q P
89 7 adantr φ ¬ R Q L C Q = C C P
90 simpr φ ¬ R Q L C Q = C ¬ R Q L C Q = C
91 1 2 3 86 87 88 89 90 ncolne1 φ ¬ R Q L C Q = C R Q
92 1 2 3 86 87 88 91 tglinerflx2 φ ¬ R Q L C Q = C Q R L Q
93 92 adantr φ ¬ R Q L C Q = C B R L Q Q R L Q
94 1 3 2 86 88 89 87 90 ncolcom φ ¬ R Q L C Q = C ¬ R C L Q C = Q
95 1 3 2 86 89 88 87 94 ncolrot1 φ ¬ R Q L C Q = C ¬ C Q L R Q = R
96 1 2 3 86 89 88 87 95 ncolne1 φ ¬ R Q L C Q = C C Q
97 96 adantr φ ¬ R Q L C Q = C B R L Q C Q
98 47 ad2antrr φ ¬ R Q L C Q = C B R L Q Q C I B
99 1 2 3 80 83 82 77 97 98 btwnlng3 φ ¬ R Q L C Q = C B R L Q B C L Q
100 1 2 3 80 83 82 97 tglinerflx2 φ ¬ R Q L C Q = C B R L Q Q C L Q
101 1 2 3 80 81 82 83 82 84 85 93 99 100 tglineinteq φ ¬ R Q L C Q = C B R L Q B = Q
102 1 18 2 4 8 6 tgbtwntriv2 φ B R I B
103 102 ad2antrr φ ¬ R Q L C Q = C B R L Q B R I B
104 101 103 eqeltrrd φ ¬ R Q L C Q = C B R L Q Q R I B
105 79 104 jca φ ¬ R Q L C Q = C B R L Q B A I B Q R I B
106 77 78 105 rspcedvd φ ¬ R Q L C Q = C B R L Q x P x A I B Q R I x
107 eleq1 t = x t a I b x a I b
108 107 cbvrexvw t R L Q t a I b x R L Q x a I b
109 108 anbi2i a P R L Q b P R L Q t R L Q t a I b a P R L Q b P R L Q x R L Q x a I b
110 109 opabbii a b | a P R L Q b P R L Q t R L Q t a I b = a b | a P R L Q b P R L Q x R L Q x a I b
111 4 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q G 𝒢 Tarski
112 8 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q R P
113 9 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q Q P
114 91 adantr φ ¬ R Q L C Q = C ¬ B R L Q R Q
115 1 2 3 111 112 113 114 tgelrnln φ ¬ R Q L C Q = C ¬ B R L Q R L Q ran L
116 eqid hl 𝒢 G = hl 𝒢 G
117 7 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q C P
118 5 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q A P
119 6 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q B P
120 92 adantr φ ¬ R Q L C Q = C ¬ B R L Q Q R L Q
121 1 3 2 86 88 89 87 90 ncolrot2 φ ¬ R Q L C Q = C ¬ C R L Q R = Q
122 pm2.45 ¬ C R L Q R = Q ¬ C R L Q
123 121 122 syl φ ¬ R Q L C Q = C ¬ C R L Q
124 123 adantr φ ¬ R Q L C Q = C ¬ B R L Q ¬ C R L Q
125 simpr φ ¬ R Q L C Q = C ¬ B R L Q ¬ B R L Q
126 47 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q Q C I B
127 1 18 2 110 117 119 120 124 125 126 islnoppd φ ¬ R Q L C Q = C ¬ B R L Q C a b | a P R L Q b P R L Q t R L Q t a I b B
128 1 2 3 86 87 88 91 tglinerflx1 φ ¬ R Q L C Q = C R R L Q
129 128 adantr φ ¬ R Q L C Q = C ¬ B R L Q R R L Q
130 26 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q C R I A
131 1 2 3 86 89 87 88 121 ncolne1 φ ¬ R Q L C Q = C C R
132 131 adantr φ ¬ R Q L C Q = C ¬ B R L Q C R
133 1 18 2 111 112 117 118 130 132 tgbtwnne φ ¬ R Q L C Q = C ¬ B R L Q R A
134 1 2 116 112 118 117 111 118 130 133 132 btwnhl1 φ ¬ R Q L C Q = C ¬ B R L Q C hl 𝒢 G R A
135 1 18 2 110 3 115 111 116 117 118 119 127 129 134 opphl φ ¬ R Q L C Q = C ¬ B R L Q A a b | a P R L Q b P R L Q t R L Q t a I b B
136 1 18 2 110 118 119 islnopp φ ¬ R Q L C Q = C ¬ B R L Q A a b | a P R L Q b P R L Q t R L Q t a I b B ¬ A R L Q ¬ B R L Q x R L Q x A I B
137 135 136 mpbid φ ¬ R Q L C Q = C ¬ B R L Q ¬ A R L Q ¬ B R L Q x R L Q x A I B
138 137 simprd φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B
139 111 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B G 𝒢 Tarski
140 115 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B R L Q ran L
141 simplr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B x R L Q
142 1 3 2 139 140 141 tglnpt φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B x P
143 simpr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B x A I B
144 139 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B G 𝒢 Tarski
145 87 ad3antrrr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B R P
146 145 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B R P
147 88 ad5antr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B Q P
148 117 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B C P
149 148 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B C P
150 90 ad5antr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B ¬ R Q L C Q = C
151 simplr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B t P
152 114 ad4antr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B R Q
153 142 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B x P
154 91 necomd φ ¬ R Q L C Q = C Q R
155 154 ad5antr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B Q R
156 141 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B x R L Q
157 1 2 3 144 147 146 153 155 156 lncom φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B x Q L R
158 simprl φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B t x I R
159 1 2 3 144 153 147 146 151 157 158 coltr3 φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B t Q L R
160 1 2 3 144 146 147 151 152 159 lncom φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B t R L Q
161 92 ad5antr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B Q R L Q
162 96 ad5antr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B C Q
163 119 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B B P
164 163 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B B P
165 6 adantr φ ¬ R Q L C Q = C B P
166 96 necomd φ ¬ R Q L C Q = C Q C
167 11 adantr φ ¬ R Q L C Q = C Q B I C
168 1 2 3 86 88 89 165 166 167 btwnlng2 φ ¬ R Q L C Q = C B Q L C
169 168 ad5antr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B B Q L C
170 simprr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B t C I B
171 1 18 2 144 149 151 164 170 tgbtwncom φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B t B I C
172 1 2 3 144 164 147 149 151 169 171 coltr3 φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B t Q L C
173 1 2 3 144 149 147 151 162 172 lncom φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B t C L Q
174 1 2 3 86 89 88 96 tglinerflx2 φ ¬ R Q L C Q = C Q C L Q
175 174 ad5antr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B Q C L Q
176 1 2 3 144 146 147 149 147 150 160 161 173 175 tglineinteq φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B t = Q
177 1 18 2 144 153 151 146 158 tgbtwncom φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B t R I x
178 176 177 eqeltrrd φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B Q R I x
179 118 ad2antrr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B A P
180 1 18 2 139 179 142 163 143 tgbtwncom φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B x B I A
181 26 ad4antr φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B C R I A
182 1 18 2 139 163 145 179 142 148 180 181 axtgpasch φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B t P t x I R t C I B
183 178 182 r19.29a φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B Q R I x
184 142 143 183 jca32 φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B x P x A I B Q R I x
185 184 expl φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B x P x A I B Q R I x
186 185 reximdv2 φ ¬ R Q L C Q = C ¬ B R L Q x R L Q x A I B x P x A I B Q R I x
187 138 186 mpd φ ¬ R Q L C Q = C ¬ B R L Q x P x A I B Q R I x
188 106 187 pm2.61dan φ ¬ R Q L C Q = C x P x A I B Q R I x
189 76 188 pm2.61dan φ x P x A I B Q R I x