Metamath Proof Explorer


Theorem ov2gf

Description: The value of an operation class abstraction. A version of ovmpog using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses ov2gf.a _ x A
ov2gf.c _ y A
ov2gf.d _ y B
ov2gf.1 _ x G
ov2gf.2 _ y S
ov2gf.3 x = A R = G
ov2gf.4 y = B G = S
ov2gf.5 F = x C , y D R
Assertion ov2gf A C B D S H A F B = S

Proof

Step Hyp Ref Expression
1 ov2gf.a _ x A
2 ov2gf.c _ y A
3 ov2gf.d _ y B
4 ov2gf.1 _ x G
5 ov2gf.2 _ y S
6 ov2gf.3 x = A R = G
7 ov2gf.4 y = B G = S
8 ov2gf.5 F = x C , y D R
9 elex S H S V
10 4 nfel1 x G V
11 nfmpo1 _ x x C , y D R
12 8 11 nfcxfr _ x F
13 nfcv _ x y
14 1 12 13 nfov _ x A F y
15 14 4 nfeq x A F y = G
16 10 15 nfim x G V A F y = G
17 5 nfel1 y S V
18 nfmpo2 _ y x C , y D R
19 8 18 nfcxfr _ y F
20 2 19 3 nfov _ y A F B
21 20 5 nfeq y A F B = S
22 17 21 nfim y S V A F B = S
23 6 eleq1d x = A R V G V
24 oveq1 x = A x F y = A F y
25 24 6 eqeq12d x = A x F y = R A F y = G
26 23 25 imbi12d x = A R V x F y = R G V A F y = G
27 7 eleq1d y = B G V S V
28 oveq2 y = B A F y = A F B
29 28 7 eqeq12d y = B A F y = G A F B = S
30 27 29 imbi12d y = B G V A F y = G S V A F B = S
31 8 ovmpt4g x C y D R V x F y = R
32 31 3expia x C y D R V x F y = R
33 1 2 3 16 22 26 30 32 vtocl2gaf A C B D S V A F B = S
34 9 33 syl5 A C B D S H A F B = S
35 34 3impia A C B D S H A F B = S