Metamath Proof Explorer


Theorem ovanraleqv

Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022)

Ref Expression
Hypothesis ovanraleqv.1 B = X φ ψ
Assertion ovanraleqv B = X x V φ A · ˙ B = C x V ψ A · ˙ X = C

Proof

Step Hyp Ref Expression
1 ovanraleqv.1 B = X φ ψ
2 oveq2 B = X A · ˙ B = A · ˙ X
3 2 eqeq1d B = X A · ˙ B = C A · ˙ X = C
4 1 3 anbi12d B = X φ A · ˙ B = C ψ A · ˙ X = C
5 4 ralbidv B = X x V φ A · ˙ B = C x V ψ A · ˙ X = C