Metamath Proof Explorer


Theorem ovconst2

Description: The value of a constant operation. (Contributed by NM, 5-Nov-2006)

Ref Expression
Hypothesis oprvalconst2.1 C V
Assertion ovconst2 R A S B R A × B × C S = C

Proof

Step Hyp Ref Expression
1 oprvalconst2.1 C V
2 df-ov R A × B × C S = A × B × C R S
3 opelxpi R A S B R S A × B
4 1 fvconst2 R S A × B A × B × C R S = C
5 3 4 syl R A S B A × B × C R S = C
6 2 5 eqtrid R A S B R A × B × C S = C