Metamath Proof Explorer


Theorem oveq123d

Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008)

Ref Expression
Hypotheses oveq123d.1 φ F = G
oveq123d.2 φ A = B
oveq123d.3 φ C = D
Assertion oveq123d φ A F C = B G D

Proof

Step Hyp Ref Expression
1 oveq123d.1 φ F = G
2 oveq123d.2 φ A = B
3 oveq123d.3 φ C = D
4 1 oveqd φ A F C = A G C
5 2 3 oveq12d φ A G C = B G D
6 4 5 eqtrd φ A F C = B G D