Metamath Proof Explorer


Theorem oveqan12d

Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995)

Ref Expression
Hypotheses oveq1d.1 φ A = B
opreqan12i.2 ψ C = D
Assertion oveqan12d φ ψ A F C = B F D

Proof

Step Hyp Ref Expression
1 oveq1d.1 φ A = B
2 opreqan12i.2 ψ C = D
3 oveq12 A = B C = D A F C = B F D
4 1 2 3 syl2an φ ψ A F C = B F D