Metamath Proof Explorer


Theorem ovidi

Description: The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses ovidi.2 x R y S * z φ
ovidi.3 F = x y z | x R y S φ
Assertion ovidi x R y S φ x F y = z

Proof

Step Hyp Ref Expression
1 ovidi.2 x R y S * z φ
2 ovidi.3 F = x y z | x R y S φ
3 moanimv * z x R y S φ x R y S * z φ
4 1 3 mpbir * z x R y S φ
5 4 2 ovidig x R y S φ x F y = z
6 5 ex x R y S φ x F y = z