Metamath Proof Explorer


Theorem ovif12

Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Assertion ovif12 if φ A B F if φ C D = if φ A F C B F D

Proof

Step Hyp Ref Expression
1 iftrue φ if φ A B = A
2 iftrue φ if φ C D = C
3 1 2 oveq12d φ if φ A B F if φ C D = A F C
4 iftrue φ if φ A F C B F D = A F C
5 3 4 eqtr4d φ if φ A B F if φ C D = if φ A F C B F D
6 iffalse ¬ φ if φ A B = B
7 iffalse ¬ φ if φ C D = D
8 6 7 oveq12d ¬ φ if φ A B F if φ C D = B F D
9 iffalse ¬ φ if φ A F C B F D = B F D
10 8 9 eqtr4d ¬ φ if φ A B F if φ C D = if φ A F C B F D
11 5 10 pm2.61i if φ A B F if φ C D = if φ A F C B F D