Metamath Proof Explorer


Theorem ovif2

Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 1-Oct-2018)

Ref Expression
Assertion ovif2 A F if φ B C = if φ A F B A F C

Proof

Step Hyp Ref Expression
1 oveq2 if φ B C = B A F if φ B C = A F B
2 oveq2 if φ B C = C A F if φ B C = A F C
3 1 2 ifsb A F if φ B C = if φ A F B A F C