Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
ovif2
Next ⟩
ovif12
Metamath Proof Explorer
Ascii
Unicode
Theorem
ovif2
Description:
Move a conditional outside of an operation.
(Contributed by
Thierry Arnoux
, 1-Oct-2018)
Ref
Expression
Assertion
ovif2
⊢
A
F
if
φ
B
C
=
if
φ
A
F
B
A
F
C
Proof
Step
Hyp
Ref
Expression
1
oveq2
⊢
if
φ
B
C
=
B
→
A
F
if
φ
B
C
=
A
F
B
2
oveq2
⊢
if
φ
B
C
=
C
→
A
F
if
φ
B
C
=
A
F
C
3
1
2
ifsb
⊢
A
F
if
φ
B
C
=
if
φ
A
F
B
A
F
C