Metamath Proof Explorer


Theorem ovig

Description: The value of an operation class abstraction (weak version). (Contributed by NM, 14-Sep-1999) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses ovig.1 x = A y = B z = C φ ψ
ovig.2 x R y S * z φ
ovig.3 F = x y z | x R y S φ
Assertion ovig A R B S C D ψ A F B = C

Proof

Step Hyp Ref Expression
1 ovig.1 x = A y = B z = C φ ψ
2 ovig.2 x R y S * z φ
3 ovig.3 F = x y z | x R y S φ
4 3simpa A R B S C D A R B S
5 eleq1 x = A x R A R
6 eleq1 y = B y S B S
7 5 6 bi2anan9 x = A y = B x R y S A R B S
8 7 3adant3 x = A y = B z = C x R y S A R B S
9 8 1 anbi12d x = A y = B z = C x R y S φ A R B S ψ
10 moanimv * z x R y S φ x R y S * z φ
11 2 10 mpbir * z x R y S φ
12 9 11 3 ovigg A R B S C D A R B S ψ A F B = C
13 4 12 mpand A R B S C D ψ A F B = C