Metamath Proof Explorer


Theorem ovima0

Description: An operation value is a member of the image plus null. (Contributed by Thierry Arnoux, 25-Jun-2019)

Ref Expression
Assertion ovima0 X A Y B X R Y R A × B

Proof

Step Hyp Ref Expression
1 simpr X A Y B X R Y = X R Y =
2 ssun2 R A × B
3 0ex V
4 3 snid
5 2 4 sselii R A × B
6 1 5 eqeltrdi X A Y B X R Y = X R Y R A × B
7 ssun1 R A × B R A × B
8 df-ov X R Y = R X Y
9 opelxpi X A Y B X Y A × B
10 8 eqeq1i X R Y = R X Y =
11 10 notbii ¬ X R Y = ¬ R X Y =
12 11 biimpi ¬ X R Y = ¬ R X Y =
13 eliman0 X Y A × B ¬ R X Y = R X Y R A × B
14 9 12 13 syl2an X A Y B ¬ X R Y = R X Y R A × B
15 8 14 eqeltrid X A Y B ¬ X R Y = X R Y R A × B
16 7 15 sselid X A Y B ¬ X R Y = X R Y R A × B
17 6 16 pm2.61dan X A Y B X R Y R A × B