Metamath Proof Explorer


Theorem ovmpo

Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses ovmpog.1 x=AR=G
ovmpog.2 y=BG=S
ovmpog.3 F=xC,yDR
ovmpo.4 SV
Assertion ovmpo ACBDAFB=S

Proof

Step Hyp Ref Expression
1 ovmpog.1 x=AR=G
2 ovmpog.2 y=BG=S
3 ovmpog.3 F=xC,yDR
4 ovmpo.4 SV
5 1 2 3 ovmpog ACBDSVAFB=S
6 4 5 mp3an3 ACBDAFB=S