Metamath Proof Explorer


Theorem ovmpoa

Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013)

Ref Expression
Hypotheses ovmpoga.1 x = A y = B R = S
ovmpoga.2 F = x C , y D R
ovmpoa.4 S V
Assertion ovmpoa A C B D A F B = S

Proof

Step Hyp Ref Expression
1 ovmpoga.1 x = A y = B R = S
2 ovmpoga.2 F = x C , y D R
3 ovmpoa.4 S V
4 1 2 ovmpoga A C B D S V A F B = S
5 3 4 mp3an3 A C B D A F B = S