Metamath Proof Explorer


Theorem ovmpodf

Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses ovmpodf.1 φ A C
ovmpodf.2 φ x = A B D
ovmpodf.3 φ x = A y = B R V
ovmpodf.4 φ x = A y = B A F B = R ψ
ovmpodf.5 _ x F
ovmpodf.6 x ψ
ovmpodf.7 _ y F
ovmpodf.8 y ψ
Assertion ovmpodf φ F = x C , y D R ψ

Proof

Step Hyp Ref Expression
1 ovmpodf.1 φ A C
2 ovmpodf.2 φ x = A B D
3 ovmpodf.3 φ x = A y = B R V
4 ovmpodf.4 φ x = A y = B A F B = R ψ
5 ovmpodf.5 _ x F
6 ovmpodf.6 x ψ
7 ovmpodf.7 _ y F
8 ovmpodf.8 y ψ
9 nfv x φ
10 nfmpo1 _ x x C , y D R
11 5 10 nfeq x F = x C , y D R
12 11 6 nfim x F = x C , y D R ψ
13 1 elexd φ A V
14 isset A V x x = A
15 13 14 sylib φ x x = A
16 nfv y φ x = A
17 nfmpo2 _ y x C , y D R
18 7 17 nfeq y F = x C , y D R
19 18 8 nfim y F = x C , y D R ψ
20 2 elexd φ x = A B V
21 isset B V y y = B
22 20 21 sylib φ x = A y y = B
23 oveq F = x C , y D R A F B = A x C , y D R B
24 simprl φ x = A y = B x = A
25 simprr φ x = A y = B y = B
26 24 25 oveq12d φ x = A y = B x x C , y D R y = A x C , y D R B
27 1 adantr φ x = A y = B A C
28 24 27 eqeltrd φ x = A y = B x C
29 2 adantrr φ x = A y = B B D
30 25 29 eqeltrd φ x = A y = B y D
31 eqid x C , y D R = x C , y D R
32 31 ovmpt4g x C y D R V x x C , y D R y = R
33 28 30 3 32 syl3anc φ x = A y = B x x C , y D R y = R
34 26 33 eqtr3d φ x = A y = B A x C , y D R B = R
35 34 eqeq2d φ x = A y = B A F B = A x C , y D R B A F B = R
36 35 4 sylbid φ x = A y = B A F B = A x C , y D R B ψ
37 23 36 syl5 φ x = A y = B F = x C , y D R ψ
38 37 expr φ x = A y = B F = x C , y D R ψ
39 16 19 22 38 exlimimdd φ x = A F = x C , y D R ψ
40 9 12 15 39 exlimdd φ F = x C , y D R ψ