Metamath Proof Explorer


Theorem ovmpodv

Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses ovmpodf.1 φ A C
ovmpodf.2 φ x = A B D
ovmpodf.3 φ x = A y = B R V
ovmpodf.4 φ x = A y = B A F B = R ψ
Assertion ovmpodv φ F = x C , y D R ψ

Proof

Step Hyp Ref Expression
1 ovmpodf.1 φ A C
2 ovmpodf.2 φ x = A B D
3 ovmpodf.3 φ x = A y = B R V
4 ovmpodf.4 φ x = A y = B A F B = R ψ
5 nfcv _ x F
6 nfv x ψ
7 nfcv _ y F
8 nfv y ψ
9 1 2 3 4 5 6 7 8 ovmpodf φ F = x C , y D R ψ