Metamath Proof Explorer


Theorem ovmpodx

Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses ovmpodx.1 φF=xC,yDR
ovmpodx.2 φx=Ay=BR=S
ovmpodx.3 φx=AD=L
ovmpodx.4 φAC
ovmpodx.5 φBL
ovmpodx.6 φSX
Assertion ovmpodx φAFB=S

Proof

Step Hyp Ref Expression
1 ovmpodx.1 φF=xC,yDR
2 ovmpodx.2 φx=Ay=BR=S
3 ovmpodx.3 φx=AD=L
4 ovmpodx.4 φAC
5 ovmpodx.5 φBL
6 ovmpodx.6 φSX
7 nfv xφ
8 nfv yφ
9 nfcv _yA
10 nfcv _xB
11 nfcv _xS
12 nfcv _yS
13 1 2 3 4 5 6 7 8 9 10 11 12 ovmpodxf φAFB=S