Metamath Proof Explorer


Theorem ovmpodx

Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses ovmpodx.1 φ F = x C , y D R
ovmpodx.2 φ x = A y = B R = S
ovmpodx.3 φ x = A D = L
ovmpodx.4 φ A C
ovmpodx.5 φ B L
ovmpodx.6 φ S X
Assertion ovmpodx φ A F B = S

Proof

Step Hyp Ref Expression
1 ovmpodx.1 φ F = x C , y D R
2 ovmpodx.2 φ x = A y = B R = S
3 ovmpodx.3 φ x = A D = L
4 ovmpodx.4 φ A C
5 ovmpodx.5 φ B L
6 ovmpodx.6 φ S X
7 nfv x φ
8 nfv y φ
9 nfcv _ y A
10 nfcv _ x B
11 nfcv _ x S
12 nfcv _ y S
13 1 2 3 4 5 6 7 8 9 10 11 12 ovmpodxf φ A F B = S