Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
First and second members of an ordered pair
ovmpoelrn
Next ⟩
dmmpoga
Metamath Proof Explorer
Ascii
Unicode
Theorem
ovmpoelrn
Description:
An operation's value belongs to its range.
(Contributed by
AV
, 27-Jan-2020)
Ref
Expression
Hypothesis
ovmpoelrn.o
⊢
O
=
x
∈
A
,
y
∈
B
⟼
C
Assertion
ovmpoelrn
⊢
∀
x
∈
A
∀
y
∈
B
C
∈
M
∧
X
∈
A
∧
Y
∈
B
→
X
O
Y
∈
M
Proof
Step
Hyp
Ref
Expression
1
ovmpoelrn.o
⊢
O
=
x
∈
A
,
y
∈
B
⟼
C
2
1
fmpo
⊢
∀
x
∈
A
∀
y
∈
B
C
∈
M
↔
O
:
A
×
B
⟶
M
3
fovrn
⊢
O
:
A
×
B
⟶
M
∧
X
∈
A
∧
Y
∈
B
→
X
O
Y
∈
M
4
2
3
syl3an1b
⊢
∀
x
∈
A
∀
y
∈
B
C
∈
M
∧
X
∈
A
∧
Y
∈
B
→
X
O
Y
∈
M