Metamath Proof Explorer


Theorem ovmpoelrn

Description: An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020)

Ref Expression
Hypothesis ovmpoelrn.o O = x A , y B C
Assertion ovmpoelrn x A y B C M X A Y B X O Y M

Proof

Step Hyp Ref Expression
1 ovmpoelrn.o O = x A , y B C
2 1 fmpo x A y B C M O : A × B M
3 fovrn O : A × B M X A Y B X O Y M
4 2 3 syl3an1b x A y B C M X A Y B X O Y M