Metamath Proof Explorer


Theorem ovmpoga

Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses ovmpoga.1 x=Ay=BR=S
ovmpoga.2 F=xC,yDR
Assertion ovmpoga ACBDSHAFB=S

Proof

Step Hyp Ref Expression
1 ovmpoga.1 x=Ay=BR=S
2 ovmpoga.2 F=xC,yDR
3 elex SHSV
4 2 a1i ACBDSVF=xC,yDR
5 1 adantl ACBDSVx=Ay=BR=S
6 simp1 ACBDSVAC
7 simp2 ACBDSVBD
8 simp3 ACBDSVSV
9 4 5 6 7 8 ovmpod ACBDSVAFB=S
10 3 9 syl3an3 ACBDSHAFB=S