Metamath Proof Explorer


Theorem ovmpoga

Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses ovmpoga.1 x = A y = B R = S
ovmpoga.2 F = x C , y D R
Assertion ovmpoga A C B D S H A F B = S

Proof

Step Hyp Ref Expression
1 ovmpoga.1 x = A y = B R = S
2 ovmpoga.2 F = x C , y D R
3 elex S H S V
4 2 a1i A C B D S V F = x C , y D R
5 1 adantl A C B D S V x = A y = B R = S
6 simp1 A C B D S V A C
7 simp2 A C B D S V B D
8 simp3 A C B D S V S V
9 4 5 6 7 8 ovmpod A C B D S V A F B = S
10 3 9 syl3an3 A C B D S H A F B = S