Metamath Proof Explorer


Theorem ovmpogad

Description: Value of an operation given by a maps-to rule. Deduction form of ovmpoga . (Contributed by SN, 14-Mar-2025)

Ref Expression
Hypotheses ovmpogad.f F = x C , y D R
ovmpogad.s x = A y = B R = S
ovmpogad.1 φ A C
ovmpogad.2 φ B D
ovmpogad.v φ S V
Assertion ovmpogad φ A F B = S

Proof

Step Hyp Ref Expression
1 ovmpogad.f F = x C , y D R
2 ovmpogad.s x = A y = B R = S
3 ovmpogad.1 φ A C
4 ovmpogad.2 φ B D
5 ovmpogad.v φ S V
6 1 a1i φ F = x C , y D R
7 2 adantl φ x = A y = B R = S
8 6 7 3 4 5 ovmpod φ A F B = S