Metamath Proof Explorer


Theorem ovmpox

Description: The value of an operation class abstraction. Variant of ovmpoga which does not require D and x to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 20-Dec-2013)

Ref Expression
Hypotheses ovmpox.1 x = A y = B R = S
ovmpox.2 x = A D = L
ovmpox.3 F = x C , y D R
Assertion ovmpox A C B L S H A F B = S

Proof

Step Hyp Ref Expression
1 ovmpox.1 x = A y = B R = S
2 ovmpox.2 x = A D = L
3 ovmpox.3 F = x C , y D R
4 elex S H S V
5 3 a1i A C B L S V F = x C , y D R
6 1 adantl A C B L S V x = A y = B R = S
7 2 adantl A C B L S V x = A D = L
8 simp1 A C B L S V A C
9 simp2 A C B L S V B L
10 simp3 A C B L S V S V
11 5 6 7 8 9 10 ovmpodx A C B L S V A F B = S
12 4 11 syl3an3 A C B L S H A F B = S