Metamath Proof Explorer


Theorem ovmpt3rabdm

Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands and the argument of the function must be sets. (Contributed by AV, 16-May-2019)

Ref Expression
Hypotheses ovmpt3rab1.o O = x V , y V z M a N | φ
ovmpt3rab1.m x = X y = Y M = K
ovmpt3rab1.n x = X y = Y N = L
Assertion ovmpt3rabdm X V Y W K U L T dom X O Y = K

Proof

Step Hyp Ref Expression
1 ovmpt3rab1.o O = x V , y V z M a N | φ
2 ovmpt3rab1.m x = X y = Y M = K
3 ovmpt3rab1.n x = X y = Y N = L
4 sbceq1a y = Y φ [˙Y / y]˙ φ
5 sbceq1a x = X [˙Y / y]˙ φ [˙X / x]˙ [˙Y / y]˙ φ
6 4 5 sylan9bbr x = X y = Y φ [˙X / x]˙ [˙Y / y]˙ φ
7 nfsbc1v x [˙X / x]˙ [˙Y / y]˙ φ
8 nfcv _ y X
9 nfsbc1v y [˙Y / y]˙ φ
10 8 9 nfsbcw y [˙X / x]˙ [˙Y / y]˙ φ
11 1 2 3 6 7 10 ovmpt3rab1 X V Y W K U X O Y = z K a L | [˙X / x]˙ [˙Y / y]˙ φ
12 11 adantr X V Y W K U L T X O Y = z K a L | [˙X / x]˙ [˙Y / y]˙ φ
13 12 dmeqd X V Y W K U L T dom X O Y = dom z K a L | [˙X / x]˙ [˙Y / y]˙ φ
14 rabexg L T a L | [˙X / x]˙ [˙Y / y]˙ φ V
15 14 adantl X V Y W K U L T a L | [˙X / x]˙ [˙Y / y]˙ φ V
16 15 ralrimivw X V Y W K U L T z K a L | [˙X / x]˙ [˙Y / y]˙ φ V
17 dmmptg z K a L | [˙X / x]˙ [˙Y / y]˙ φ V dom z K a L | [˙X / x]˙ [˙Y / y]˙ φ = K
18 16 17 syl X V Y W K U L T dom z K a L | [˙X / x]˙ [˙Y / y]˙ φ = K
19 13 18 eqtrd X V Y W K U L T dom X O Y = K