Metamath Proof Explorer


Theorem ovolcl

Description: The volume of a set is an extended real number. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Assertion ovolcl A vol * A *

Proof

Step Hyp Ref Expression
1 eqid y * | f 2 A ran . f y = sup ran seq 1 + abs f * < = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
2 1 ovolval A vol * A = sup y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * <
3 ssrab2 y * | f 2 A ran . f y = sup ran seq 1 + abs f * < *
4 infxrcl y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * sup y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * < *
5 3 4 ax-mp sup y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * < *
6 2 5 eqeltrdi A vol * A *