Metamath Proof Explorer


Theorem ovolctb2

Description: The volume of a countable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014)

Ref Expression
Assertion ovolctb2 A A vol * A = 0

Proof

Step Hyp Ref Expression
1 ssun1 A A
2 simpl A A A
3 nnssre
4 unss A A
5 2 3 4 sylanblc A A A
6 nnenom ω
7 domentr A ω A ω
8 6 7 mpan2 A A ω
9 8 adantl A A A ω
10 nnct ω
11 unctb A ω ω A ω
12 9 10 11 sylancl A A A ω
13 6 ensymi ω
14 domentr A ω ω A
15 12 13 14 sylancl A A A
16 reex V
17 16 ssex A A V
18 5 17 syl A A A V
19 ssun2 A
20 ssdomg A V A A
21 18 19 20 mpisyl A A A
22 sbth A A A
23 15 21 22 syl2anc A A A
24 ovolctb A A vol * A = 0
25 5 23 24 syl2anc A A vol * A = 0
26 ovolssnul A A A vol * A = 0 vol * A = 0
27 1 5 25 26 mp3an2i A A vol * A = 0