Metamath Proof Explorer


Theorem ovolfcl

Description: Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Assertion ovolfcl F : 2 N 1 st F N 2 nd F N 1 st F N 2 nd F N

Proof

Step Hyp Ref Expression
1 ffvelrn F : 2 N F N 2
2 1 elin2d F : 2 N F N 2
3 1st2nd2 F N 2 F N = 1 st F N 2 nd F N
4 2 3 syl F : 2 N F N = 1 st F N 2 nd F N
5 4 1 eqeltrrd F : 2 N 1 st F N 2 nd F N 2
6 ancom 1 st F N 2 nd F N 1 st F N 2 nd F N 1 st F N 2 nd F N 1 st F N 2 nd F N
7 elin 1 st F N 2 nd F N 2 1 st F N 2 nd F N 1 st F N 2 nd F N 2
8 df-br 1 st F N 2 nd F N 1 st F N 2 nd F N
9 8 bicomi 1 st F N 2 nd F N 1 st F N 2 nd F N
10 opelxp 1 st F N 2 nd F N 2 1 st F N 2 nd F N
11 9 10 anbi12i 1 st F N 2 nd F N 1 st F N 2 nd F N 2 1 st F N 2 nd F N 1 st F N 2 nd F N
12 7 11 bitri 1 st F N 2 nd F N 2 1 st F N 2 nd F N 1 st F N 2 nd F N
13 df-3an 1 st F N 2 nd F N 1 st F N 2 nd F N 1 st F N 2 nd F N 1 st F N 2 nd F N
14 6 12 13 3bitr4i 1 st F N 2 nd F N 2 1 st F N 2 nd F N 1 st F N 2 nd F N
15 5 14 sylib F : 2 N 1 st F N 2 nd F N 1 st F N 2 nd F N