Metamath Proof Explorer


Theorem ovolfi

Description: A finite set has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Assertion ovolfi A Fin A vol * A = 0

Proof

Step Hyp Ref Expression
1 id A A
2 fict A Fin A ω
3 nnenom ω
4 3 ensymi ω
5 domentr A ω ω A
6 2 4 5 sylancl A Fin A
7 ovolctb2 A A vol * A = 0
8 1 6 7 syl2anr A Fin A vol * A = 0