Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
ovolfi
Next ⟩
ovolsn
Metamath Proof Explorer
Ascii
Unicode
Theorem
ovolfi
Description:
A finite set has 0 outer Lebesgue measure.
(Contributed by
Mario Carneiro
, 13-Aug-2014)
Ref
Expression
Assertion
ovolfi
⊢
A
∈
Fin
∧
A
⊆
ℝ
→
vol
*
⁡
A
=
0
Proof
Step
Hyp
Ref
Expression
1
id
⊢
A
⊆
ℝ
→
A
⊆
ℝ
2
fict
⊢
A
∈
Fin
→
A
≼
ω
3
nnenom
⊢
ℕ
≈
ω
4
3
ensymi
⊢
ω
≈
ℕ
5
domentr
⊢
A
≼
ω
∧
ω
≈
ℕ
→
A
≼
ℕ
6
2
4
5
sylancl
⊢
A
∈
Fin
→
A
≼
ℕ
7
ovolctb2
⊢
A
⊆
ℝ
∧
A
≼
ℕ
→
vol
*
⁡
A
=
0
8
1
6
7
syl2anr
⊢
A
∈
Fin
∧
A
⊆
ℝ
→
vol
*
⁡
A
=
0