Metamath Proof Explorer


Theorem ovolficc

Description: Unpack the interval covering property using closed intervals. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Assertion ovolficc A F : 2 A ran . F z A n 1 st F n z z 2 nd F n

Proof

Step Hyp Ref Expression
1 iccf . : * × * 𝒫 *
2 inss2 2 2
3 rexpssxrxp 2 * × *
4 2 3 sstri 2 * × *
5 fss F : 2 2 * × * F : * × *
6 4 5 mpan2 F : 2 F : * × *
7 fco . : * × * 𝒫 * F : * × * . F : 𝒫 *
8 1 6 7 sylancr F : 2 . F : 𝒫 *
9 ffn . F : 𝒫 * . F Fn
10 fniunfv . F Fn n . F n = ran . F
11 8 9 10 3syl F : 2 n . F n = ran . F
12 11 sseq2d F : 2 A n . F n A ran . F
13 12 adantl A F : 2 A n . F n A ran . F
14 dfss3 A n . F n z A z n . F n
15 ssel2 A z A z
16 eliun z n . F n n z . F n
17 simpll z F : 2 n z
18 fvco3 F : 2 n . F n = . F n
19 ffvelrn F : 2 n F n 2
20 19 elin2d F : 2 n F n 2
21 1st2nd2 F n 2 F n = 1 st F n 2 nd F n
22 20 21 syl F : 2 n F n = 1 st F n 2 nd F n
23 22 fveq2d F : 2 n . F n = . 1 st F n 2 nd F n
24 df-ov 1 st F n 2 nd F n = . 1 st F n 2 nd F n
25 23 24 eqtr4di F : 2 n . F n = 1 st F n 2 nd F n
26 18 25 eqtrd F : 2 n . F n = 1 st F n 2 nd F n
27 26 eleq2d F : 2 n z . F n z 1 st F n 2 nd F n
28 ovolfcl F : 2 n 1 st F n 2 nd F n 1 st F n 2 nd F n
29 elicc2 1 st F n 2 nd F n z 1 st F n 2 nd F n z 1 st F n z z 2 nd F n
30 3anass z 1 st F n z z 2 nd F n z 1 st F n z z 2 nd F n
31 29 30 bitrdi 1 st F n 2 nd F n z 1 st F n 2 nd F n z 1 st F n z z 2 nd F n
32 31 3adant3 1 st F n 2 nd F n 1 st F n 2 nd F n z 1 st F n 2 nd F n z 1 st F n z z 2 nd F n
33 28 32 syl F : 2 n z 1 st F n 2 nd F n z 1 st F n z z 2 nd F n
34 27 33 bitrd F : 2 n z . F n z 1 st F n z z 2 nd F n
35 34 adantll z F : 2 n z . F n z 1 st F n z z 2 nd F n
36 17 35 mpbirand z F : 2 n z . F n 1 st F n z z 2 nd F n
37 36 rexbidva z F : 2 n z . F n n 1 st F n z z 2 nd F n
38 16 37 syl5bb z F : 2 z n . F n n 1 st F n z z 2 nd F n
39 15 38 sylan A z A F : 2 z n . F n n 1 st F n z z 2 nd F n
40 39 an32s A F : 2 z A z n . F n n 1 st F n z z 2 nd F n
41 40 ralbidva A F : 2 z A z n . F n z A n 1 st F n z z 2 nd F n
42 14 41 syl5bb A F : 2 A n . F n z A n 1 st F n z z 2 nd F n
43 13 42 bitr3d A F : 2 A ran . F z A n 1 st F n z z 2 nd F n