Metamath Proof Explorer


Theorem ovolfs2

Description: Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypothesis ovolfs2.1 G = abs F
Assertion ovolfs2 F : 2 G = vol * . F

Proof

Step Hyp Ref Expression
1 ovolfs2.1 G = abs F
2 ovolfcl F : 2 n 1 st F n 2 nd F n 1 st F n 2 nd F n
3 ovolioo 1 st F n 2 nd F n 1 st F n 2 nd F n vol * 1 st F n 2 nd F n = 2 nd F n 1 st F n
4 2 3 syl F : 2 n vol * 1 st F n 2 nd F n = 2 nd F n 1 st F n
5 inss2 2 2
6 rexpssxrxp 2 * × *
7 5 6 sstri 2 * × *
8 ffvelrn F : 2 n F n 2
9 7 8 sselid F : 2 n F n * × *
10 1st2nd2 F n * × * F n = 1 st F n 2 nd F n
11 9 10 syl F : 2 n F n = 1 st F n 2 nd F n
12 11 fveq2d F : 2 n . F n = . 1 st F n 2 nd F n
13 df-ov 1 st F n 2 nd F n = . 1 st F n 2 nd F n
14 12 13 eqtr4di F : 2 n . F n = 1 st F n 2 nd F n
15 14 fveq2d F : 2 n vol * . F n = vol * 1 st F n 2 nd F n
16 1 ovolfsval F : 2 n G n = 2 nd F n 1 st F n
17 4 15 16 3eqtr4rd F : 2 n G n = vol * . F n
18 17 mpteq2dva F : 2 n G n = n vol * . F n
19 1 ovolfsf F : 2 G : 0 +∞
20 19 feqmptd F : 2 G = n G n
21 id F : 2 F : 2
22 21 feqmptd F : 2 F = n F n
23 ioof . : * × * 𝒫
24 23 a1i F : 2 . : * × * 𝒫
25 24 ffvelrnda F : 2 x * × * . x 𝒫
26 24 feqmptd F : 2 . = x * × * . x
27 ovolf vol * : 𝒫 0 +∞
28 27 a1i F : 2 vol * : 𝒫 0 +∞
29 28 feqmptd F : 2 vol * = y 𝒫 vol * y
30 fveq2 y = . x vol * y = vol * . x
31 25 26 29 30 fmptco F : 2 vol * . = x * × * vol * . x
32 2fveq3 x = F n vol * . x = vol * . F n
33 9 22 31 32 fmptco F : 2 vol * . F = n vol * . F n
34 18 20 33 3eqtr4d F : 2 G = vol * . F