Metamath Proof Explorer


Theorem ovolfsf

Description: Closure for the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Hypothesis ovolfs.1 G = abs F
Assertion ovolfsf F : 2 G : 0 +∞

Proof

Step Hyp Ref Expression
1 ovolfs.1 G = abs F
2 absf abs :
3 subf : ×
4 fco abs : : × abs : ×
5 2 3 4 mp2an abs : ×
6 inss2 2 2
7 ax-resscn
8 xpss12 2 ×
9 7 7 8 mp2an 2 ×
10 6 9 sstri 2 ×
11 fss F : 2 2 × F : ×
12 10 11 mpan2 F : 2 F : ×
13 fco abs : × F : × abs F :
14 5 12 13 sylancr F : 2 abs F :
15 1 feq1i G : abs F :
16 14 15 sylibr F : 2 G :
17 16 ffnd F : 2 G Fn
18 16 ffvelrnda F : 2 x G x
19 ovolfcl F : 2 x 1 st F x 2 nd F x 1 st F x 2 nd F x
20 subge0 2 nd F x 1 st F x 0 2 nd F x 1 st F x 1 st F x 2 nd F x
21 20 ancoms 1 st F x 2 nd F x 0 2 nd F x 1 st F x 1 st F x 2 nd F x
22 21 biimp3ar 1 st F x 2 nd F x 1 st F x 2 nd F x 0 2 nd F x 1 st F x
23 19 22 syl F : 2 x 0 2 nd F x 1 st F x
24 1 ovolfsval F : 2 x G x = 2 nd F x 1 st F x
25 23 24 breqtrrd F : 2 x 0 G x
26 elrege0 G x 0 +∞ G x 0 G x
27 18 25 26 sylanbrc F : 2 x G x 0 +∞
28 27 ralrimiva F : 2 x G x 0 +∞
29 ffnfv G : 0 +∞ G Fn x G x 0 +∞
30 17 28 29 sylanbrc F : 2 G : 0 +∞