Metamath Proof Explorer


Theorem ovolfsval

Description: The value of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Hypothesis ovolfs.1 G = abs F
Assertion ovolfsval F : 2 N G N = 2 nd F N 1 st F N

Proof

Step Hyp Ref Expression
1 ovolfs.1 G = abs F
2 1 fveq1i G N = abs F N
3 fvco3 F : 2 N abs F N = abs F N
4 2 3 syl5eq F : 2 N G N = abs F N
5 ffvelrn F : 2 N F N 2
6 5 elin2d F : 2 N F N 2
7 1st2nd2 F N 2 F N = 1 st F N 2 nd F N
8 6 7 syl F : 2 N F N = 1 st F N 2 nd F N
9 8 fveq2d F : 2 N abs F N = abs 1 st F N 2 nd F N
10 df-ov 1 st F N abs 2 nd F N = abs 1 st F N 2 nd F N
11 9 10 eqtr4di F : 2 N abs F N = 1 st F N abs 2 nd F N
12 ovolfcl F : 2 N 1 st F N 2 nd F N 1 st F N 2 nd F N
13 12 simp1d F : 2 N 1 st F N
14 13 recnd F : 2 N 1 st F N
15 12 simp2d F : 2 N 2 nd F N
16 15 recnd F : 2 N 2 nd F N
17 eqid abs = abs
18 17 cnmetdval 1 st F N 2 nd F N 1 st F N abs 2 nd F N = 1 st F N 2 nd F N
19 14 16 18 syl2anc F : 2 N 1 st F N abs 2 nd F N = 1 st F N 2 nd F N
20 abssuble0 1 st F N 2 nd F N 1 st F N 2 nd F N 1 st F N 2 nd F N = 2 nd F N 1 st F N
21 12 20 syl F : 2 N 1 st F N 2 nd F N = 2 nd F N 1 st F N
22 19 21 eqtrd F : 2 N 1 st F N abs 2 nd F N = 2 nd F N 1 st F N
23 11 22 eqtrd F : 2 N abs F N = 2 nd F N 1 st F N
24 4 23 eqtrd F : 2 N G N = 2 nd F N 1 st F N