Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
ovolge0
Next ⟩
ovolf
Metamath Proof Explorer
Ascii
Unicode
Theorem
ovolge0
Description:
The volume of a set is always nonnegative.
(Contributed by
Mario Carneiro
, 16-Mar-2014)
Ref
Expression
Assertion
ovolge0
⊢
A
⊆
ℝ
→
0
≤
vol
*
⁡
A
Proof
Step
Hyp
Ref
Expression
1
ssrab2
⊢
y
∈
ℝ
*
|
∃
f
∈
≤
∩
ℝ
2
ℕ
A
⊆
⋃
ran
⁡
.
∘
f
∧
y
=
sup
ran
⁡
seq
1
+
abs
∘
−
∘
f
ℝ
*
<
⊆
ℝ
*
2
0xr
⊢
0
∈
ℝ
*
3
infxrgelb
⊢
y
∈
ℝ
*
|
∃
f
∈
≤
∩
ℝ
2
ℕ
A
⊆
⋃
ran
⁡
.
∘
f
∧
y
=
sup
ran
⁡
seq
1
+
abs
∘
−
∘
f
ℝ
*
<
⊆
ℝ
*
∧
0
∈
ℝ
*
→
0
≤
sup
y
∈
ℝ
*
|
∃
f
∈
≤
∩
ℝ
2
ℕ
A
⊆
⋃
ran
⁡
.
∘
f
∧
y
=
sup
ran
⁡
seq
1
+
abs
∘
−
∘
f
ℝ
*
<
ℝ
*
<
↔
∀
x
∈
y
∈
ℝ
*
|
∃
f
∈
≤
∩
ℝ
2
ℕ
A
⊆
⋃
ran
⁡
.
∘
f
∧
y
=
sup
ran
⁡
seq
1
+
abs
∘
−
∘
f
ℝ
*
<
0
≤
x
4
1
2
3
mp2an
⊢
0
≤
sup
y
∈
ℝ
*
|
∃
f
∈
≤
∩
ℝ
2
ℕ
A
⊆
⋃
ran
⁡
.
∘
f
∧
y
=
sup
ran
⁡
seq
1
+
abs
∘
−
∘
f
ℝ
*
<
ℝ
*
<
↔
∀
x
∈
y
∈
ℝ
*
|
∃
f
∈
≤
∩
ℝ
2
ℕ
A
⊆
⋃
ran
⁡
.
∘
f
∧
y
=
sup
ran
⁡
seq
1
+
abs
∘
−
∘
f
ℝ
*
<
0
≤
x
5
eqid
⊢
y
∈
ℝ
*
|
∃
f
∈
≤
∩
ℝ
2
ℕ
A
⊆
⋃
ran
⁡
.
∘
f
∧
y
=
sup
ran
⁡
seq
1
+
abs
∘
−
∘
f
ℝ
*
<
=
y
∈
ℝ
*
|
∃
f
∈
≤
∩
ℝ
2
ℕ
A
⊆
⋃
ran
⁡
.
∘
f
∧
y
=
sup
ran
⁡
seq
1
+
abs
∘
−
∘
f
ℝ
*
<
6
5
ovolmge0
⊢
x
∈
y
∈
ℝ
*
|
∃
f
∈
≤
∩
ℝ
2
ℕ
A
⊆
⋃
ran
⁡
.
∘
f
∧
y
=
sup
ran
⁡
seq
1
+
abs
∘
−
∘
f
ℝ
*
<
→
0
≤
x
7
4
6
mprgbir
⊢
0
≤
sup
y
∈
ℝ
*
|
∃
f
∈
≤
∩
ℝ
2
ℕ
A
⊆
⋃
ran
⁡
.
∘
f
∧
y
=
sup
ran
⁡
seq
1
+
abs
∘
−
∘
f
ℝ
*
<
ℝ
*
<
8
5
ovolval
⊢
A
⊆
ℝ
→
vol
*
⁡
A
=
sup
y
∈
ℝ
*
|
∃
f
∈
≤
∩
ℝ
2
ℕ
A
⊆
⋃
ran
⁡
.
∘
f
∧
y
=
sup
ran
⁡
seq
1
+
abs
∘
−
∘
f
ℝ
*
<
ℝ
*
<
9
7
8
breqtrrid
⊢
A
⊆
ℝ
→
0
≤
vol
*
⁡
A