Metamath Proof Explorer


Theorem ovolge0

Description: The volume of a set is always nonnegative. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Assertion ovolge0 A 0 vol * A

Proof

Step Hyp Ref Expression
1 ssrab2 y * | f 2 A ran . f y = sup ran seq 1 + abs f * < *
2 0xr 0 *
3 infxrgelb y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * 0 * 0 sup y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * < x y * | f 2 A ran . f y = sup ran seq 1 + abs f * < 0 x
4 1 2 3 mp2an 0 sup y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * < x y * | f 2 A ran . f y = sup ran seq 1 + abs f * < 0 x
5 eqid y * | f 2 A ran . f y = sup ran seq 1 + abs f * < = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
6 5 ovolmge0 x y * | f 2 A ran . f y = sup ran seq 1 + abs f * < 0 x
7 4 6 mprgbir 0 sup y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * <
8 5 ovolval A vol * A = sup y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * <
9 7 8 breqtrrid A 0 vol * A