Metamath Proof Explorer


Theorem ovolicc

Description: The measure of a closed interval. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Assertion ovolicc A B A B vol * A B = B A

Proof

Step Hyp Ref Expression
1 iccssre A B A B
2 1 3adant3 A B A B A B
3 ovolcl A B vol * A B *
4 2 3 syl A B A B vol * A B *
5 simp2 A B A B B
6 simp1 A B A B A
7 5 6 resubcld A B A B B A
8 7 rexrd A B A B B A *
9 simp3 A B A B A B
10 eqeq1 m = n m = 1 n = 1
11 10 ifbid m = n if m = 1 A B 0 0 = if n = 1 A B 0 0
12 11 cbvmptv m if m = 1 A B 0 0 = n if n = 1 A B 0 0
13 6 5 9 12 ovolicc1 A B A B vol * A B B A
14 eqeq1 z = y z = sup ran seq 1 + abs f * < y = sup ran seq 1 + abs f * <
15 14 anbi2d z = y A B ran . f z = sup ran seq 1 + abs f * < A B ran . f y = sup ran seq 1 + abs f * <
16 15 rexbidv z = y f 2 A B ran . f z = sup ran seq 1 + abs f * < f 2 A B ran . f y = sup ran seq 1 + abs f * <
17 16 cbvrabv z * | f 2 A B ran . f z = sup ran seq 1 + abs f * < = y * | f 2 A B ran . f y = sup ran seq 1 + abs f * <
18 6 5 9 17 ovolicc2 A B A B B A vol * A B
19 4 8 13 18 xrletrid A B A B vol * A B = B A