Metamath Proof Explorer


Theorem ovolicc2

Description: The measure of a closed interval is upper bounded by its length. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ovolicc.1 φ A
ovolicc.2 φ B
ovolicc.3 φ A B
ovolicc2.m M = y * | f 2 A B ran . f y = sup ran seq 1 + abs f * <
Assertion ovolicc2 φ B A vol * A B

Proof

Step Hyp Ref Expression
1 ovolicc.1 φ A
2 ovolicc.2 φ B
3 ovolicc.3 φ A B
4 ovolicc2.m M = y * | f 2 A B ran . f y = sup ran seq 1 + abs f * <
5 4 elovolm z M f 2 A B ran . f z = sup ran seq 1 + abs f * <
6 simprr φ f 2 A B ran . f A B ran . f
7 unieq u = ran . f u = ran . f
8 7 sseq2d u = ran . f A B u A B ran . f
9 pweq u = ran . f 𝒫 u = 𝒫 ran . f
10 9 ineq1d u = ran . f 𝒫 u Fin = 𝒫 ran . f Fin
11 10 rexeqdv u = ran . f v 𝒫 u Fin A B v v 𝒫 ran . f Fin A B v
12 8 11 imbi12d u = ran . f A B u v 𝒫 u Fin A B v A B ran . f v 𝒫 ran . f Fin A B v
13 eqid topGen ran . = topGen ran .
14 eqid topGen ran . 𝑡 A B = topGen ran . 𝑡 A B
15 13 14 icccmp A B topGen ran . 𝑡 A B Comp
16 1 2 15 syl2anc φ topGen ran . 𝑡 A B Comp
17 retop topGen ran . Top
18 iccssre A B A B
19 1 2 18 syl2anc φ A B
20 uniretop = topGen ran .
21 20 cmpsub topGen ran . Top A B topGen ran . 𝑡 A B Comp u 𝒫 topGen ran . A B u v 𝒫 u Fin A B v
22 17 19 21 sylancr φ topGen ran . 𝑡 A B Comp u 𝒫 topGen ran . A B u v 𝒫 u Fin A B v
23 16 22 mpbid φ u 𝒫 topGen ran . A B u v 𝒫 u Fin A B v
24 23 adantr φ f 2 A B ran . f u 𝒫 topGen ran . A B u v 𝒫 u Fin A B v
25 ioof . : * × * 𝒫
26 ffn . : * × * 𝒫 . Fn * × *
27 25 26 ax-mp . Fn * × *
28 dffn3 . Fn * × * . : * × * ran .
29 27 28 mpbi . : * × * ran .
30 simpr φ f 2 f 2
31 elovolmlem f 2 f : 2
32 30 31 sylib φ f 2 f : 2
33 inss2 2 2
34 rexpssxrxp 2 * × *
35 33 34 sstri 2 * × *
36 fss f : 2 2 * × * f : * × *
37 32 35 36 sylancl φ f 2 f : * × *
38 fco . : * × * ran . f : * × * . f : ran .
39 29 37 38 sylancr φ f 2 . f : ran .
40 39 adantrr φ f 2 A B ran . f . f : ran .
41 40 frnd φ f 2 A B ran . f ran . f ran .
42 retopbas ran . TopBases
43 bastg ran . TopBases ran . topGen ran .
44 42 43 ax-mp ran . topGen ran .
45 41 44 sstrdi φ f 2 A B ran . f ran . f topGen ran .
46 fvex topGen ran . V
47 46 elpw2 ran . f 𝒫 topGen ran . ran . f topGen ran .
48 45 47 sylibr φ f 2 A B ran . f ran . f 𝒫 topGen ran .
49 12 24 48 rspcdva φ f 2 A B ran . f A B ran . f v 𝒫 ran . f Fin A B v
50 6 49 mpd φ f 2 A B ran . f v 𝒫 ran . f Fin A B v
51 simprl φ f 2 v 𝒫 ran . f Fin A B v v 𝒫 ran . f Fin
52 elin v 𝒫 ran . f Fin v 𝒫 ran . f v Fin
53 51 52 sylib φ f 2 v 𝒫 ran . f Fin A B v v 𝒫 ran . f v Fin
54 53 simprd φ f 2 v 𝒫 ran . f Fin A B v v Fin
55 53 simpld φ f 2 v 𝒫 ran . f Fin A B v v 𝒫 ran . f
56 55 elpwid φ f 2 v 𝒫 ran . f Fin A B v v ran . f
57 56 sseld φ f 2 v 𝒫 ran . f Fin A B v t v t ran . f
58 39 ffnd φ f 2 . f Fn
59 58 adantr φ f 2 v 𝒫 ran . f Fin A B v . f Fn
60 fvelrnb . f Fn t ran . f k . f k = t
61 59 60 syl φ f 2 v 𝒫 ran . f Fin A B v t ran . f k . f k = t
62 57 61 sylibd φ f 2 v 𝒫 ran . f Fin A B v t v k . f k = t
63 62 ralrimiv φ f 2 v 𝒫 ran . f Fin A B v t v k . f k = t
64 fveqeq2 k = g t . f k = t . f g t = t
65 64 ac6sfi v Fin t v k . f k = t g g : v t v . f g t = t
66 54 63 65 syl2anc φ f 2 v 𝒫 ran . f Fin A B v g g : v t v . f g t = t
67 1 ad2antrr φ f 2 v 𝒫 ran . f Fin A B v g : v t v . f g t = t A
68 2 ad2antrr φ f 2 v 𝒫 ran . f Fin A B v g : v t v . f g t = t B
69 3 ad2antrr φ f 2 v 𝒫 ran . f Fin A B v g : v t v . f g t = t A B
70 eqid seq 1 + abs f = seq 1 + abs f
71 32 adantr φ f 2 v 𝒫 ran . f Fin A B v g : v t v . f g t = t f : 2
72 simprll φ f 2 v 𝒫 ran . f Fin A B v g : v t v . f g t = t v 𝒫 ran . f Fin
73 simprlr φ f 2 v 𝒫 ran . f Fin A B v g : v t v . f g t = t A B v
74 simprrl φ f 2 v 𝒫 ran . f Fin A B v g : v t v . f g t = t g : v
75 simprrr φ f 2 v 𝒫 ran . f Fin A B v g : v t v . f g t = t t v . f g t = t
76 2fveq3 t = x . f g t = . f g x
77 id t = x t = x
78 76 77 eqeq12d t = x . f g t = t . f g x = x
79 78 rspccva t v . f g t = t x v . f g x = x
80 75 79 sylan φ f 2 v 𝒫 ran . f Fin A B v g : v t v . f g t = t x v . f g x = x
81 eqid u v | u A B = u v | u A B
82 67 68 69 70 71 72 73 74 80 81 ovolicc2lem5 φ f 2 v 𝒫 ran . f Fin A B v g : v t v . f g t = t B A sup ran seq 1 + abs f * <
83 82 expr φ f 2 v 𝒫 ran . f Fin A B v g : v t v . f g t = t B A sup ran seq 1 + abs f * <
84 83 exlimdv φ f 2 v 𝒫 ran . f Fin A B v g g : v t v . f g t = t B A sup ran seq 1 + abs f * <
85 66 84 mpd φ f 2 v 𝒫 ran . f Fin A B v B A sup ran seq 1 + abs f * <
86 85 rexlimdvaa φ f 2 v 𝒫 ran . f Fin A B v B A sup ran seq 1 + abs f * <
87 86 adantrr φ f 2 A B ran . f v 𝒫 ran . f Fin A B v B A sup ran seq 1 + abs f * <
88 50 87 mpd φ f 2 A B ran . f B A sup ran seq 1 + abs f * <
89 breq2 z = sup ran seq 1 + abs f * < B A z B A sup ran seq 1 + abs f * <
90 88 89 syl5ibrcom φ f 2 A B ran . f z = sup ran seq 1 + abs f * < B A z
91 90 expr φ f 2 A B ran . f z = sup ran seq 1 + abs f * < B A z
92 91 impd φ f 2 A B ran . f z = sup ran seq 1 + abs f * < B A z
93 92 rexlimdva φ f 2 A B ran . f z = sup ran seq 1 + abs f * < B A z
94 5 93 syl5bi φ z M B A z
95 94 ralrimiv φ z M B A z
96 4 ssrab3 M *
97 2 1 resubcld φ B A
98 97 rexrd φ B A *
99 infxrgelb M * B A * B A sup M * < z M B A z
100 96 98 99 sylancr φ B A sup M * < z M B A z
101 95 100 mpbird φ B A sup M * <
102 4 ovolval A B vol * A B = sup M * <
103 19 102 syl φ vol * A B = sup M * <
104 101 103 breqtrrd φ B A vol * A B